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v« ' S48 sibieadtion of tntenss rediation beams with plasmas plays an

el

L
3
T

“ prte ' rele in such aress as leser driven fusion, ionospheric processes and
m&‘mm. Necently the poasidility of employing intense laser bDeams
‘ ;‘ h-ﬂ-&m electrons to ultrs=high energies has also stimulated interest in

redistion self-focusing in plu.n."'" One such laser driven acceleration
‘sohems is the laser beat wave accelerator. This is a ocollective acceleration
scheme which utilizes a large amplitude plasms wave with phase velocity

slightly less than the velocity of light to acoelerate charged particles. The
large asplitude plasma vave is excited by the nonlinear coupling of two
intense laser deams propagating through the plasma. In this process the two

lagser dDeass with frequencies w5, and corresponding wave numbers k., k

1'
couple through the plasaa to produce a ponderomotive wave with frequency

2

®, = u, and wave number k, = k,. If w, < w, * e the plasma wave will
initially grow linearly in tilo.' If the laser frequencies are much greater
than the amdbient plasma frequency, up.. then the phase velocity of the
ponderomotive wave is nearly equal to the group velocity of the laser wave,
Electrons which are either injected into the plasma or part of the thermal
tail of the plasma distribution can be accelerated by the large gradients
associated with the plasma wave.
In this paper the self-focusing properties of a plasma on an intense

_electromagnetic beam are studied.'5"22 The propagation of an intense
radiation beam in a plasma can result in self-focusing by creating a density
depression in the plasma as well as by increasing the electron mass by

relativistic effects. The density depression {s due to transverse

ponderomotive forces which tend to expel plasma from high field regions. The

.

radial ponderomotive force on the electrons is larger than on the ions by the

Manuscript approved January 20, 1987,




' ﬁm beam redius. This density depression oreates a local increase
ia the offestive ingdex of refrastion and acts as an optical guide for the
redistion dean. In addition to this self-focusing mechanisa a further
redustion i the plasaa frequency cocurs in regions of high fleld intensity
e te the relativistic mass inorease of the electrons in the presence of the
rediation beam. The aself-focuaing due to the density depression ooccurs on a
longer time scale than does the relativistic mass i{ncrease self-focusing
eoffest. When the ponderomotive pressure is much less than the plasma kinetic
preasure the time scale for the density depression to ocour is g . R/cs,
where R is the radiation deam radius and Cg i3 the ion acoustic speed. Since
R is assumed much greater than the Dedye length, the characteristic time is
grester than the fon time scale (tg > .;p. On the other hand, the time
soale for the relativistic mass increase is T * 0.1 where w is the radiation
frequency and is assumed much greater than the electron plasma frequency.

Previous research on self-focusing was primarily concerned with the
ponderomotive self-focusing ofrcct.’5'17 Max'5 presented steady-state
solutions for the radiation beam structure due to ponderomotive self-focusing
in & nonrelativistic plasma. In this treatment it was assumed that the plasma
had attained equilidrium with the radiation fi{eld and, hence, the plasma
density was represented by a Boltzman-type response, n -~ exp (eop/T.). where
op is the ponderomotive potential and Tq 18 the electron temperature.

lolber's performed a similar treatment of ponderomotive self-focusing with the

inolusion of relativistic effects and, again, the assumption of an equilibrium




T

tt“i. huﬁmcmm.m}u- jons oan not respond to the

petiibvremtive foree.

The preblens of relativistic self-focusing alone, nu‘d for short times
vofore the ion density responds to ponderomotive force, has been considered by
Max ot al.,'® Sprangle and Tang'? and Sohaidt and Horton.20 Numerical
simulations have alec been attempted for arbditrary times including the combined
effests of relativistic, ponderomotive and thermal self-foousing.2!22
This problea of self-foocusing in the transition period during which the plasma
profile begine to respond to ponderomotive forces and thermal heating will be
addressed in a later paper.

The analysis presented here will be concerned only with relativistic
self-focusing on a time scale sufficiently short so that the plasma density
profile does noi evolve significantly under the influence of the radiation

beam. This implies that the pulse length of the radiation beam, t,, must be

L’
short compared to g and, of course, long compared to a radiation period, 'L

The relativistic self-focusing effect i3 analyzed for a helically
polarized dbeam propagating in the z direction. The beam is assumed to be
axially symmetric with respect to the z axis and has a profile which is only a
funotion of r,z and t. An equation which describes the envelope of the
radiation beam is derived. The envelope equation includes diffraction effects
a9 well as relativistic plasma effects and has a form similar to a particle

beam envelope oquntlon.23'2” In the present radiation beam envelope equation,

diffraction effects are manifested through a term which is equivalent to beam

emittance in the particle beam envelope equation.




m Qmuuy polarised rediation desm propagating within a cold
eskitslenless plasms. The vector potentisl of the field is taken to have the
S. ferw

A (F,3,8) = AP,3) (eos(kz-ut)e = s1n (u—.e)iy). (1)

whore the amplitude A(r,s) is a slowly varying functicn of r and 3z, and the
frequenoy « is assumed to be much greater than the effective plasma
frequency. The approximate local dispersion relation associated with the
field in (1) 1is

w0k (czgi . uﬁ(r.z))/ch. (2)
2 2,12 2., .2 2
where kl - (k‘ - ky) is the transverse wave number, kl << k° and w (r,2)

is the effective dackground plasma frequency. For purposes of this discussion

the effective plasma frequency is written in the form

2
2 n(r,2)
2 - -5;:- ;i%,—;; (3)

172

where u__ = (lw|o|2n°/a ) is the ambient plasma frequency, n(r,z) is

po (-]
the modified electron density of the plasma due to the excited plasma wave,

Y,(r,2) = (1¢az(r.z))1/2 is the relativistic mass factor and a(r,z) =

i

|0|A(r.z)/n°c2 is the normalized laser field amplitude. The relativistic

factor Y arises from the plasma electrons' relativistic mass change due to

i

their transverse oscillations in the radiation field.




- Uaing the ray equations from gecmetric optics, the transverse motion of
the elestronsgnetic rays are given by

d - r
dt -] ok
-1

B0,
(-]

k - S (4b)
dt - -’
: 1 or
3 -1
where El - i(t)ox + §(t)oy is the transverse position of a ray,
gl - k‘(t)ox * ky(t)oy is the transverse wave number of a ray and w is given
by (2). Substituting (2) into (4a) and (4b) yields the transverse ray
equations
£2 + &%, 0% - 0, (58)
dt
&5 . 2=
—% + 9 (r,2)y = 0, (5p)
dt
where
2
w_(r,z)
@2(r,2) = - —Bi—, (5¢)
2k r
and
auz n(r,z)/n
=2 -2 2 2 (5d)

u - .
or po r (1*a2(r,z))1/2

Equations (5a,b) describe the transverse motion of the rays and assume that
the rays travel nearly parallel to the z axis, i.e., |dx/dt], [dy/dt| <<

Ve © where vg 18 the group velocity.
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Ii this lndtion an envelope equation is derived which describes the

' sr-n-n-rs- dynsmics of the radiation beam envelope as it propagates through a

" plasma. The derivation is similar to that used to obtain a particle beam

enivelope equation?’ in the sense that the ray equations in (5a,b) have a

form which is similar to particle orbits in the paraxial approximation.
lTb this end, various moments are taken of the ray equations given by

(). Multiplying (5a) by x and dx/dt, (Sb) by y and dy/dt and combining,

yields the following virial and energy equations

2=2
12-9—'— - vz + !12(1".z)r'2 =0, (6a)
dt
-2 -2
&+ B%(F,2) & -0, (6b)
dt
-2 =2 =2 <2 S, ien2 = ey 2
where r° = x° + y© and v© = (dx/dt)“ + (dy/dt)“. Substituting (6a) into (6b)
yields
3-2 ~2
1d4r . d 2 &r_ .

To obtain the envelope equation, consider a thin slice of the beam lying in

the transverse. The transverse segment of the beam is assumed to consist of N

individual rays traveling through it. The mean square radius of the radiation

beam envelope is then defined as
-2

R2(Z,t) = <ro> = %

N
;e (8)
i




uhere r, is the radial position of the ith ray and < > denotes the averaging

3

operstion. Mathematically, this averaging can de written in terms of an

integral over the distribution function of initial ray positions at the

initial time t,,f(F .t ).

2 <Q(rF)> = [ aF F LR, 00(F), (9)
o

where Q(r) is a quantity dependent on the ray position r = F(Fo.e).

Performing this average over all the rays on (7) and using (8) gives

3,2 - ~2
I4R .4 g2 2>+<nzg';—>-o. (10)

2 dt3 dt

In order to express the averages in (10) in a more manageable form, the
individual radial ray velocity is written as a sum of a mean velocity term and
a residual velocity term. That is the individual ray velocity is written as
dR

._t+6;’ (11)

L]

Ve

where (r/R)dR/dt is defined as the mean radial velocity at the ray position r
and c?r is the residual radial velocity. Substituting (11) into the last term

in (10) yields

~2
2 dr 2=2, dR/dt 2=.=
<R at > = 2497 r > - + 2449 err>. (12)

To further simplify (12), notice that

S e B ) BN KM AANSONCAOM T N S e g g At



(13)

then
14 .l
a@E? *aat <"
Pyl v>-eu"" :: “1sv>. (14)

Hence, the conclusion is reached that <r év> = O for any positive integer s.

Assuming that nz(r) can be expanded in a power series of r implies that

<a%Fe¥> = 0. Thus, (12) becomes
<g? ﬁ) - 2¢9%F% 1 R
at R at’

Substituting (15) into (10) yields

(15)

3.2
1TaTR 4 9%r2) , p¢gdpdy R/Qt (16)
2.3 & R

2 2.2

Since the last two terms in (16) comdine

be written as

Integrating (17) and'téking the constant

2r2

to give R d(R <Q@°r">)/dt, (16) can

2%r%] - o. (17)

of integration to be 2cze2 gives




dzl <K2F2> ‘2
L -—-o' (18)
az? R g3
where ‘2 - nzlcz and z = ct.

Bquation (18) describes the evolution of the radiation beam envelope, R,
as function of z. Diffraction effects which result in a spreading of the deam
are contained in the constant of {ntegration term e¢. The form of the envelope
equation for the radiation beam, (18), is similar to the usual particle beam
envelope equation. The second term in (18) can be either focusing or

2. 'In the present situation, because of

defocusing depending on the sign of Q
the relativistic transverse oscillations of the background plasma2 electrons,
this term results in focusing of the radiation beam. The third term in (18)
is always a defocusing term and is due to diffraction effects.

2

The diffraction constant ¢~ can be evaluated for the special case of a

Caussian ray distribution. Using the definition in (9) and requiring <1> = 1

2 2

and <r°> « R then implies

- 2
f(r .to) > e . (19)
Since the density of rays is proportional to the intensity of the radiation

field, this implies that r(Fo,to) is proportional to aZ(Fo,t). In standard

notation, the vector potential of a Gaussian radiation field is written as

aoRso -rZ/Ri
a(r,z) = i;(z_) e ’ (20)

where R,(z) is the spot size, Rgo the minimum spot size and a, is the

0o

normalized peak radiation amplitude. In a vacuum, Rs(z) is given by




) " ‘ 2
SR : {z=2 )" 1/2
p 5 by . o

A zR

; "@@"7#3 L RR‘§/2 18 the Rayleigh lengthzs and z, is the axial location of the .

© mtnimum spot size.
 Since r(Fo.co) is proportional to az(Fo.t), then by comparing (19) and

(20) implies that. the mean-square radial ray position is related to the spot

2 2

- size by R® = Rslz. Rewriting the envelope equation (18) in terms of the spot

size Rs gives

2
4Ry, 2¢%> _ %
d22 Rs Rz

- 0. (22)

The integration constant € can now be evaluated by using the vacuum solution

g = u/kz. Notice that

- l/(tﬂso) is the well=-known

(21). In vacuum, <52K2> = 0 and, hence, ¢

€ = A/x =R _06,, where A = 2x/k and 0o

o so 4’
diffraction angle.zs

d

Solution of Envelope Equation

In order to solve the envelope equation (22) it is necessary first to

evaluate the average of the quantity r2K2, where

n(r,z)/n o

- - - 1]
2022 ar (1 + a%(r,2))1/2

(23)

where t=f(,t) and z = ct + ;o‘

Recall that the averaging can be written in terms of the distribution of
initial ray positions t(;o,to) as in (9). Notice that it is possible to
define a Eulerian ray distribution function at position r and time t as

follows:

10




L]
£(r.t) = [ & £(F ,008(r = F(F,0)). (28)
o -]
;f@%ﬂilﬂor nov the average of the quantity Q(r) defined by
<«Q(r)> = [ arre(r,t)Q(r)
°

- [ orr [ & 2R 008(r = F(FL))atr)
o

o

- [ &F F t(F . t)a(F)

o

- <Qr). (25)

Hence, the averaging <Q(;)> caq be replaced by an integration over the
Eulerian spatial ocoordinate r providing the distridbution f(r,t) is known.
Since there is no hope in determining an analytic expression for the
distridbution f(r,t), in order to obtain an estimate of <52K2>, it will be
assumed that the radjation beam retains a Gaussian profile as it propagates

through the plasma. Thus, f(r,t) will be approximated as

a“(r,2), (26)

where z = ot + z, and a(r,2z) is given by (20). Notice that <1> = 1 and

r?> o nixz. Using this expression, then <r2K%> becomes

n(r, z)/n
<«2x®> -2(-—-2%-) j ar r2a%(r,2) gr ,,2
o (1+a°(r,2))
‘w2 = n(s)/n
- -(2) [ds(1-s)e™® ———2__ . (27)
ck £ (1+x 2. 3)1/2

11
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* ﬁ a,w a(r) = 0 for r > Ry, then (27) can be evaluated analytically. For
»;;h;t case, lctttns y=e", then

‘ 2
L
iy | ezs_i.v_rm )
o 1/2

(1+x “y)

? () - g1~y = w3521, (28)

o o
e

-2,1/2 172

where h - [c1+x™%) 241 )2, g = [(1+x72 Yp )'/€=1]/2 and Yy " exp(‘ZRi/Ri).
It is insightful to write the envelope equation in terms of an effective

particle located at R,(z) moving in a potential V(Ry). Equation (22) becomes

2
dR oV(R_ )
dz s
[ where
av .8.':2322 Rs [ (12hy)
- h(x) = g(x)(1=ny,) = ¢n - ’ (30)
583 °2“2 .5332 b 1+g 33

with x =R /(a R ) and Yp * exp(-zn /Rs)‘

P

Envelope Behavior

To analyze the behavior of the radiation envelope, it is most convenient
to use the normalized envelope radius x = Rs/(aonso). In the limit Rp > o,

then (30) can be written as

d )
dtz odx ’

vhere

12




x?sv- tscxlt(i + xoz)‘lzzl) + 20n2

- 2!n((1+x-2)1/2 +1)], (32)

= (20/(kR 222))? and o - (upoaoﬂso/(ﬂc)]z.

The above equation describes the position of a particle x(t) moving in the
effective potential V(x,a). In the expression for 3V/3x, the first term on
the right of (32) represents vacuum diffraction whereas the term proportional
to a represents the relativistic self-focusing of the plasma,

It i{s interesting to note that the shape of the potential V(x) depends
only on the parameter a. As will be shown below, o can be written as the
laser power over the critical power. For a > 1, the potential V(x) has a
minimum and bounded oscillatory solutions for x(t) are possible.

Expanding V(x) for large x (small a,) gives

g: .-x 3 - ax 3, (33)

For a = 1, there are no net diffraction or focusing forces (to leading order)
and a matched radiation beam is possidble. In this limit (x >> 1), the

envelope diffracts for a < 1 and focuses for a > 1. Since the total radiation

zua R_) /(8cez). the parameter a can dbe written

power 1is given by P = (m cwa R,

as g = P/Pcrit’ where the critical power is given by
m 02 2 mz 9 w 2
Pcrit — = 17.4 x 10 ——é' Watts. (34)
“po “no

13




‘ .-thli,x:- 1nqnd_633?‘1§ no 1cngor valid. Expanding (32) for small

tnn:tien (35) states that for a fixed a > 1, focusing will continue until the
S d!!fraot&on tlrn donlnatcs when x3 < 1/(16a). Hence, at a sufficiently
lﬂlll x. ena onvolopo will bo netlected back out towards its original width.
ihla thil ocours the onvclope radius x will either oscillate between its
uln&lul valuc at rotloetxon and its original value, or it will continue to
dtftraoe 1ndof1n1tely, dopending on the envelope's initial "velocity" (the
initial slopo ;q_x(t)). For a given a > 1 and an initial x >> 1, if the
initial slope dx/dt is sufficiently small, then x(t) will oscillate between
its initial value and its value at reriection. If dx/dt is initially large,
x(t) will initially decrease to its minimum value at reflection and then
ltnorotao indefinitely.
The exact shape of V(x) for a given a must be determined numerically. In

general, if a > 1 then there will exist a finite well whose minimum occurs

at Xpe As a increases, the depth of this well increases, the well becomes

narrower and the location of the minimum x, decreases. The potential V(x)

is plotted in Fig. 1 for a = 5.0 and Fig. 2 for o = 1,2. Notice that Xp = 0.4
for a = 5,0 and X, = 1.8 for a = 1.2,
Recall from the vacuum solution that the minimum of R_/R in vacuum is

s’ %so
unity. Hence, the minimum for x in vacuum is x = 1/a°. Ideally, it is

possible to have a dbnoscillatlng envelope of constant radius if the radiation




ﬁgjrﬁiiliiﬁiﬁétfi ty ¥ith x(t,) = x, and dx/dt = 0. This corresponds
Tiho.ﬁ‘ﬁ;ﬁetcn“dntorihs'ihn plasma precisely at the bottom of the potential
—5211 iffﬁ gero velocity. In vacuum, dx/dt = O at the minimum spot size
1‘;li¥p Rso and, hence, x = 1/10. In order to achieve a nonoscillating solution,
ltv;a’FCéuirid that x(t)) = x, = 1/a,. Hence, for a = 5.0 (a=1.2) a
nonoseillating matched beam would be possible for ay = 2.5 (ay = 0.55)
provided tha radiation envelope enters the plasma with zero slope, dRs/dz = 0.
Since current technology limits a, < 1, operstion in this constant envelope
mode is possible only for a slightly greater than unity.

In practice, it may not be possible to aschieve a radiation beam which
enters a plasma with dnsldi =0and x = Xg. However, it may be possible to
operate near x = x, with a small initial dx/dt. In this case, when

X=x,* 8x with &x small, the envelope equation (31) can be expanded to give

e

, v
— X - -y “3x, (36)
dtz o8
where
uv V14x2 = x,)
2 0 3 £ £
s " " T 1 = lboax . (37)
s 4 r 2 3
r (1oxp + x 1+xg)

For the parameters a = 1.2, 8, " 0.55, Rso = 0.1 cm and u/upo = 10, this gives

- 2'°/“os = 43,5 cm and w zlu 2. 3 x 10-6. The Rayleigh length

= 1.8, os’“po

’r os
for this case is zR s 4.0 onm.

Figures 3-6 show numerical results for the envelope behavior for a test

case vhere a = 1,2, Rso = 0.1 ¢cm and ”/“po = 10.0. The critical power is

1

given by P = 17 x 10’ W, the well minimum occurs at X = 1.8 and the

erit
oscillating wavelength in the well is xos = 44 cm. Figure 3 shows operation

at 8 " 1/xr ® 0.55-and with zero initial slope, dRg/dz = 0. This {s the

condition for a nonoscillating matched beam. Here P = 2,1 x 10‘2w,

15




2 1 1

.bﬂ -2 10' aec- y 0 ™ 2.4 x 1013860- and the Rayleigh length 1s

3" 8.0 om. Flgure 4 shows a case with a, slightly less than 1/xr = 0.55

L with zero initial slope, while Fig. 5 shows a case with a, = 0.55 and a small
initial slope. In both these cases, the envelope shows a small amplitude
oscillation whose wavelength is given by A = xos = 44 cm. Figure § presents a
case where a, << 0.55 (initially, ; >> 1) and with a significant initial
slope. Here the initial slope is determined by specifying z, where

/2 before entering the plasma at z » 0. For this case,

Ry(2) = Rgo(l + 22/23)
the radiation initially focuses down to a value significantly less than Rs°
("over—=focusing”) and then is reflected and diffracts indefinitely.

When larger laser powers are used (larger values of a) the results are
qualitatively similar except the potential well i3 now deseper, narrower and
has a minimum occurring at a saaller value of Xp. For example, when g = 5,
R

= .1 cm and w/w_. = 10, then x_, = 0.41 and *oa = 8.9 cm. A nonoscillating

80 po b
matched beam requires 'o = 2.5 and no initial slope., For a, = 2.5, this gives
Popgy = 1-7 = 10'24, P = 8.7 x 10", “o = 141 % 10'%gec™!, w = 1.1 x 10'33ec”"
and zZp 1.8 om.

Numerical Simulation

In order to confirm the above results, the wave equation for the

radiation is solved numerically. For a plasma with constant density, and a

driving current that results from the relativistic electron oscillations, the

wave equation can be written as

2
Y0 a(r,z)

' (38)
2 (1+a%)172

. 21 g-g-;]a(r,z) .

| comm 1
"3
%noa
-

r

16




m the slowly varying amplitude approximation was used. This equation is
ﬂvﬁ aumerically with 64 x 68 transverse Fourier modes.

The initial transverse radiation profile was a Gaussian with zero

nmt ocurvature. As the radiation propagated through the plasma, the

- prafile developed finite but small amplitude "skirts" indicating higher order

transverse GCaussian modes are involved. The 1/e radius (at which the
smplitude is 1/e that on axis) is chosen to be the measure of the radiation
envelope. This i{s plotted as a function of z in Fig. 7 for the case when the
initial normalized envelope x 'Rs/ (Rsoao) is somewhat greater than that needed
for a matched bean. Figure 7 indicates that the envelope oscillates about the
predicted matched beam radius. The oscillatory behavior is no longer simply
harmonic, as implied by the above theory, and the oscillation wavelength is
approximately twice the predicted value. Notice that after the initial
transient, the maximum of the envelope oscillation is only about 2/3 of the
initial radius of the radiation. This discrepancy is brobably due to the fact
that the profile deviates from its initially Gaussian shape. For the case
where the value of the initial normalized envelope x approaches that required
for a matched beam, the oscillation amplitude becomes very small and the
oscillatory behavior becomes more erratic.

In general, the numerical simulations support the conclusion that the

radiation envelope oscillates about the value required for matched beam

propagation.




Cw The sheve results indicate that relativistic electron duiver motion leads
io.nlhlhcod ﬂbcqllnt of radiation beams. Physically, relativistic quivering

~ of the electrons leads to an effective decrease in the plasma density via the

-- slectron plasas frequency, “p‘z - n(r.z)upgl(nojl) where Yi -1 + az(r,z). A )

. radiation fleld az(r,z) peaked on axis at r = 0 will produce an index of
refraction profile n(r,z) peaked on axis such that 3n/3r < 0, where
neck/u=™ (1~ ug(r.z)/u2)1/2. Since 3n/3r < 0, this implies focusing of the
radiation bean.

The effects of relativistic solf-rocualﬁg on the development of the
radiation envelope R (z) are best understood through the analogy of a single
particle with ordit R,(z) moving in an effective potential V(Rg). As
discussed above, the shape of the potential V is determined by a single

9

parameter g = P/Pcrit' where the critical power is given by P = 1T x 10

erit
(u/nbo)zﬂltts. Provided a > 1 (laser pou.r'greater than the critical power),
then there exists a minimum in the effective potential V located at

X, = xf(c). where x = Rs/(nso'o)‘ As o is increased, the well depth

increases and becomes narrower, and the location of the minimum x, decreases.

f
The existence of such a well implies that bounded solutions for Rs(z) are
possible where R, (2) oscillates between the two reflection points associated
with the effective potential, For example, if a > 1, a radiation beam

entering the plasma with an initial value of x greater than Xp will initially

begin to focus (x decreases). When this occurs, two outcomes are possible:
i) the normalized envelope x(z) will continue to decrease to some minimum
value at which it will be reflected and expand indefinitely, or {i) the
envelope x(z) will remain bounded, oscillating indefinitely between the
minimua raflection point and its initial value. The occurrence of one or the

other of the above two cases depends on the initial "convergence angle" of the

18
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envelope x(z) as it enters the plasma or, more precisely, on the initial slope
dl'/dz. If dR,/dz is too large then case 1) occurs: the envelope is
reflected and expands indefinitely. If the initial dR,/dz is sufficiently
small, then case i1) occurs: the envelope becomes trapped in the potential
well and oscillates about the minimum Xge Under a special set of initial
conditions, dR,/dz = 0 and x = Xps it is possible to have a matched beam with
a constant envelope.

The following approximations were made in this analysis: the
mathemat ical model used in the above calculations was based on the ray
equations of geometrical optics. These ray equations then used a dispersion
relation for an electromagnetic wave in an unmagnetized plasma in which it was

assumed k% >> k° and w2 >> u§

1

Gaussian and, furthermore, it was assumed to remain Gaussian as it propagated

. The radiation beam was initially assumed to be

through the plasma, a(r,z) = (a.R /Rs)exp(-ralni(z)). The last

0"'80
approximation, which restricts the analysis to short pulses, assumes that the
background plasma density remains constant and does not evolve under the
influence of the transverse ponderomotive force. Such an approximation should
be valid for short pulse times t < Ro/cs'

The results discussed above are in qualitative disagreement with those of
Schmidt and Horton.zo who also analyzed relativistic self-focusing for short
pulses. They found a similar expression for Pcrit' beyond which self-focusing
occurs. They claimed, however, that for P > Pcrit the radiation beam would
collapse down to some minimum radius and neither oscillate nor reflect. This
1s similar to the results of Max et al.,'3 in which it was determined that

self~focusing occurs when a certain threshold is surpassed. Their analysis,

however, did not predict the envelope behavior once self-focusing occurs. The

above numerical simuidtion of the wave equation indicates that the correct




| iNVCQOpgwb!h.vior is an oscillation about the value required for a matched
bean.

The results of Folbar,‘e which included relativistic focusing along with
that of the equilibrium ponderomotive effect, are in qualitative agreement
with those presented above. Specifically, Felbor’s found that the behavior of
the radiation envelope could also be described as a particle in an effective
potential. Provided the laser power was sufficiently high, the potential
exhibited a minimum and, hence, either oscillating, bounded solutions or
reflected, diverging solutions were possible. The critical power in Felber's
case was similar to that found by Hax.’s Popig ® 2 x 10"T(ev)m2/u§ Watts,
which is typically less than that discussed above when the effects of
ponderomotive focusing are neglected. The main limitation with the analysis
of Pelber'S and Max'5 1s that both used an equilibrium density response,
ne- oxp(oop/T) where ’p is the ponderomotive potential. Such an equilibrium

density response is invalid for the leading segment of the radiation pulse.
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Figure 1., The effective potential V(x) as a function x = Rs/(Rsoao) for

a = 5.0, The well minimum occurs at Xp = 0.4,
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Figure 2. The effective potential V (x) as a function of x = Rs/(Rsoao)
for a = 1.2, The well minimum occurs at X, = 1.8.
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Figure 3. The radiation envelope R (2) for the parameters a = 1.2,

R” = 0.1 cm, '/”po = 10.0 and 1?3- O;?S. For this run
sec . Initially,

Popst = 17x10'! Wand u = 2.3x10
X =X, = 1.8 and dx/dz = 0.

16




0 10 20 30 40 50
Z (cm)
Figure 4. The radiation envelope Re(z) for the parameters a = 1.2,
Rgo = 0.1 com, u/up = 10.0 and a, = 0.54, For this run
Porgt = 17X10'W, w - 2.4x10"3sec”", 2
xoa = 44 em. Initially, x = 1.02 x

R = 4.1 cm and

r and dx/dz = 0.




Figure 5.

0 10 20 30 40 50
Z (cm)

The radiation envelope Rs(z) for the parameters, a = 1.2,

R, = 0.1 om, w/w o 10.0 and a, = 0.55. For this run

80

Popge = 17%10'W, w = 2.4x10'3sec™, 25 =4.0 om and A, = 44 cm.

Initially, x = Xp ® 1.8 with a small slope dx/dz » 0 (dRs/dz =
2

Rsozo/zn , where z, = 0.1 em).
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Figure 6. The radiation envelope Rs(z) for the parameters
a=1,2, Rso = 0.1 cm, w/w = 10.0 and a - 0.14, For this
run Pcrit = 17x10”", W= 9.lh:1013sec-1 and zg = 16.0 cm,

2,, 2 1/2' -
Initially, Ry = Rs°(1 + 2,°/25%) with zo/zR 1/3.
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Figure 7.

The 1/e radial width in terms of x 'Rg/(Rso‘o) as a function of
z (in om) as determined by numerical simulation of Eq. (38). For

this run, a = 5, w/w__ = 10, ‘o = 2,21 and Rso = 0.11 em.
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